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The instability of an annular layer coated on the interior side of an outer circular
tube and surrounding another annular layer coated on the exterior side of an inner
circular tube, is studied in the absence of an imposed flow due to a pressure gradient
or boundary motion. As the radius of the inner cylinder tends to vanish and the
radius of the outer cylinder tends to infinity, the inner layer reduces to a liquid
thread suspended in a quiescent infinite ambient fluid. The fluids are separated by a
membrane that exhibits constant surface tension and develops elastic tensions due to
deformation from the unstressed cylindrical shape. The surface tension is responsible
for the Rayleigh capillary instability, but the elastic tensions resist the deformation
and slow down or even prevent the growth of small perturbations. In the first part of
this paper, we formulate the linear stability problem for axisymmetric perturbations,
and derive a nonlinear eigenvalue system whose solution produces the complex phase
velocity of the normal modes. When inertial effects are negligible, there are two
normal modes; one is stable under any conditions, and the second may be unstable
when the interfacial elasticity is sufficiently small compared to surface tension, and
the wavelength of the perturbation is sufficiently long. Stability graphs are presented
to illustrate the properties of the normal modes and their dependence on the ratio of
the viscosity of the outer to inner fluid, the interfacial elasticity, and the ratios of the
cylinders’ radii to the interface radius. The results show that as the interfacial elasticity
tends to vanish, the unconditionally stable mode becomes physically irrelevant by
requiring extremely large ratios of axial to lateral displacement of material points
along the trace of the membrane in an azimuthal plane. In the second part of this
paper, we investigate the nonlinear instability of an infinite thread in the limit of
vanishing Reynolds numbers by dynamical simulation based on a boundary-integral
method. In the problem formulation, the elastic tensions derive from a constitutive
equation for a thin sheet of an incompressible isotropic elastic solid described by
Mooney’s constitutive law. The numerical results suggest that the interfacial elasticity
ultimately restrains the growth of disturbances and leads to slowly evolving periodic
shapes, in agreement with laboratory observations.

1. Introduction
The instability of cylindrical interfaces due to surface tension has received con-

siderable attention since Plateau’s (1873) observations of the breakup of liquid jets,
and the classical analyses of Rayleigh (1878, 1892), as reviewed by Yarin (1993),
Papageorgiou (1996), Eggers (1997), Lin & Reitz (1998). Much less attention has
been devoted to cylindrical interfaces that do not simply mark the boundary between
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two fluids, but have a distinct structure that is responsible for non-isotropic tensions.
Such interfaces are known to arise in several biological and biophysical contexts, as
discussed by Lipowsky (1991), Nelson, Powers & Seifert (1995), and Seifert (1997).
For example, axisymmetric unduloidal shapes with constant mean curvature, includ-
ing those assumed by certain foraminifera, and the myelin figures found inside and
outside aged red blood cells, have been speculated to result from the instability of
cylindrical membrane tubules.

In this work, we consider the instability of cylindrical interfaces with a membrane-
like constitution that is responsible for non-isotropic and deformation-dependent
tension. In practice, these membranes may be identified with grossly polluted or
polymerized interfaces of elongated capsules. In biophysical and physiological ap-
plications, these membranes may be identified with single or lamellar composites of
lipid bilayers, possibly in the presence of a supporting protein network. Examples are
the network comprising the cytoskeleton of red blood cells and the capsular shell of
eukaryotic organisms.

The mechanical behaviour of a membrane depends strongly on its constitution. If
the fluids on either side of a membrane are immiscible, surface tension is established
as the result of chemical asymmetry, that is, differences in attractive molecular forces
between the two species. Surfactant molecules diminish these differences and render
the surface tension a function of the local surfactant concentration. Polymerized
membranes develop stress resultants, that is elastic tensions, and bending moments
similar to those exhibited by thin elastic shells. The bilayer of the membrane of red
blood cells is responsible for incompressible behaviour, whereas the cytoskeleton is
responsible for elastic behaviour that causes the cell to return to the resting shape of
a biconcave disk (e.g. Mohandas & Evans 1994). When subjected to hydrodynamic
traction, the membrane develops a position-dependent isotropic tension which en-
sures that the deformation preserves the surface area of material patches over the
membrane.

Zarda, Chien & Skalak (1977) computed large elastic deformations of red blood
cells on the basis of a model that includes the elasticity of the membrane under tension
in its own plane, as well bending moments. Several authors have used lubrication flow
models to describe the motion of tightly fitting deformable particles through capillary
tubes, as reviewed by Secomb & Hsu (1993). Small and large deformations of solitary
and suspensions of capsules enclosed by elastic membranes, modelling red blood cells,
were studied by Barthès-Biesel (1980), Barthès-Biesel & Rallison (1981), Li, Barthès-
Biesel & Helmy (1988), Pozrikidis (1995), Ramanujan & Pozrikidis (1998), Navot
(1998), Eggleton & Popel (1998), and Breyiannis & Pozrikidis (1999). The statics
and dynamics of fluid-containing elastic shells have been studied extensively in the
laboratory and by numerical simulation with reference to the oscillations and collapse
of elastic vessels in biomechanics (e.g. Pedley & Luo 1998; Heil 1997, 1999a,b).

Membranes consisting of lipid bilayers exhibit bending elasticity, that is resistance
to bending from an equilibrium configuration. The equilibrium shape of membranes
consisting of a symmetric bilayer possesses zero mean curvature. The surface tension
of these membranes incorporates two contributions: one associated with a surface
energy that is proportional to the membrane surface area, and an entropic tension
associated with the membrane’s wrinkled shape due to thermal fluctuations. The
application of an external tension to counteract the entropic tension smooths out
the corrugated shapes and reveals an unfolded area that increases with tension at a
logarithmic rate. To a first approximation, the energy stored in a membrane consisting
of a symmetric bilayer can be set equal to the sum of the total surface area multiplied
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by the surface tension, and the integral of the square of the mean curvature multiplied
by twice the membrane bending stiffness (Lipowsky 1991).

Pozrikidis (1990), Zhou & Pozrikidis (1995), Kraus et al. (1996), and Seifert (1998)
computed the deformation of vesicles enclosed by incompressible membranes subject
to a straining or simple shear flow. Kraus et al. (1996) and Seifert (1998) accounted
for the bending moments by setting the jump in the interfacial hydrodynamic traction
equal to the gradient of an appropriate membrane energy function. More recently,
Boey, Boal & Discher (1998a,b) developed a coarse-grained molecular model that
permits the direct coupling of classical hydrodynamics to the dynamics of the molec-
ular layers and networks comprising the membrane, in a manner that circumvents
the explicit use of a macroscopic constitutive equation.

Relevant to the subject of the present work is the laboratory study of Bar-Ziv
& Moses (1994) who excited stable cylindrical bilayer membranes of radii 0.3 to
5 µm and length a few hundred µm by the use of laser tweezers, and observed
an instability that causes the formation of sinusoidal corrugations with suppressed
thermal fluctuations. In physical terms, the laser spot causes local heating that
produces strong electric field gradients which pull the bilayer toward the spot, thereby
generating significant surface tension that initiates a capillary instability. When the
wave amplitude has grown to a sufficiently large level, bending moments arrest
its growth. Bar-Ziv & Moses (1994) observed that the reduced wavenumber ka of
the ‘pearling’ state lies in the range (0.64, 1), with typical value of 0.8, and used this
observation to compute the entropic tension based on membrane energy consideration;
k is the wavenumber and a is the thread radius. Bar-Ziv & Moses (1994) observed
that the stronger application of the tweezers gives rise to a pearling conformation
consisting of isolated, nearly spherical vesicles travelling along thin tubes towards
the point where the tweezers have been applied. When the tweezers are released,
the periodic corrugation immediately disappears to yield the cylindrical shape. The
pearling configuration disppears gradually as surface-tension relaxation waves travel
through the narrow stems. These experiments clearly demonstrate that a certain
amount of sustained surface tension is able to induce long-lived or even permanent
deformation. Nelson et al. (1995) proposed a model for predicting the wavelength of
the corrugations seen in the experiments, accounting for the hydrodynamics of the
bilayer under tension.

The experiments of Bar-Ziv & Moses (1994) involve a hydrodynamic system that
is governed by a destabilizing mechanism associated with surface tension, and a
stabilizing mechanism due to elastic membrane behaviour. Our goal in this paper is
to study the interplay between these two mechanisms on the basis of a prototypical
configuration. We consider, in particular, the instability of a cylindrical interface
between two viscous fluids in the presence of a uniform and time-independent surface
tension, and subject to elastic tensions developing due to the deformation. For the
sake of generality, we also account for the presence of an inner coaxial cylinder that
may be regarded as a model of a cell nucleus, and an outer coaxial cylinder that may
be regarded as the surface of a boundary.

Halpern & Grotberg (1992, 1993) studied the dynamics of a thin film coated on the
inner surface of an elastic tube modelling a bronchiole, taking into consideration the
presence of surfactants. Using an asymptotic model that incorporates the lubrication
approximation for the fluid flow and a small-deflection approximation for the wall
tensions, they showed that one of the following possibilities may occur: a liquid bridge
may form occluding the bronchiole; the wall may collapse when the surface tension is
sufficient high or the wall modulus of elasticity is sufficiently low; or both occlusion



214 C. Pozrikidis

and collapse may occur. The physical system studied by Halpern & Grotberg (1992,
1993) is similar to that considered in the present study, in the sense that both involve
the destabilizing action of surface tension and stabilizing elastic tensions. Differences,
however, exist in both methods of analysis and physical application. Most important,
the absence of interfacial elasticity in the system of Halpern & Grotberg does not
allow the perturbations to evolve toward a steady or slowly evolving shape.

Several authors have studied the collapse of an elastic tube occurring when the
external pressure is higher than the internal pressure, that is under negative transmural
pressure (e.g. Pedley & Luo 1998; Heil 1997, 1998). In the mathematical modelling, the
tube is assumed to develop in-plane elastic tensions as well as bending moments due
to the deformation from a specified unstressed configuration. When the magnitude of
a negative transmural pressure is sufficiently large, non-axisymmetric buckling occurs
and the tube assumes a pinched shape. There are obvious similarities between the
collapse of an elastic tube and the instability of an elastic interface. One important
difference is that in the case of an elastic tube, the transmural pressure is positive, its
magnitude being determined by the tube radius and the surface tension. Thus, when
the surface tension vanishes instability does not arise.

In the first part of this paper, we carry out a linear stability analysis of a cylindri-
cal interface between two viscous fluids subject to axisymmetric perturbations, and
demonstrate explicitly the stabilizing effect of the elastic tensions. In the limit of
vanishing Reynolds number and in the presence of interfacial elasticity, we obtain
two normal modes with different ratios of the axial to lateral displacement of material
points over the trace of the membrane in an azimuthal plane. In the second part of
this paper, we study the nonlinear stages of the instability of a thread in the limit of
vanishing Reynolds number by means of numerical simulations using the boundary-
integral method for Stokes flow. For simplicity, we assume that the interface elasticity
is adequately described by a constitutive equation corresponding to a thin sheet of
an isotropic elastic and incompressible material obeying Mooney’s constitute law.
The results of the simulations demonstrate explicitly how the competition between
a stabilizing and a destabilizing mechanism may lead to perfect or slowly evolving
equilibrium shapes similar to those observed in the aforementioned experiments.

2. Linear stability analysis for Navier––Stokes flow
We consider the instability of an annular viscous layer coated on the interior

surface of an outer circular cylinder, and surrounding a core fluid coated on the
exterior surface of an inner circular cylinder, as illustrated in figure 1. As the radius
of the inner cylinder tends to vanish and the radius of the outer cylinder tends
to infinity, the core reduces to an infinite thread suspended in an infinite quiescent
ambient fluid. We assume that the two fluids are separated by a membrane with
infinitesimal thickness that exhibits time-independent and uniform surface tension,
and develops elastic tensions due to deformation from the unstressed shape. In the
unperturbed cylindrical state, the fluids are stationary and the elastic tensions vanish.

We begin by introducing cylindrical polar coordinates (x, σ, ϕ), with the x-axis
coinciding with the axis of the thread or annular layer, as shown in figure 1. In
the unperturbed state, the interface has a perfectly cylindrical shape with a circular
cross-section of radius a. To carry out a normal-mode analysis, we describe the radial
position of the interface as

σ = f(x, t) = a+ εa1 exp (ik(x− ct)), (2.1)
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Figure 1. Illustration of an annular layer coated on the interior surface of an outer circular tube
and surrounding another annular layer coated on the exterior surface of an inner circular tube. The
two fluids are separated by a membrane that exhibits constant surface tension and develops elastic
tensions due to deformation from the cylindrical shape.

where ε is a dimensionless coefficient whose magnitude is much less than unity, a1

is the complex amplitude of the interfacial perturbation, i is the imaginary unit,
k = 2π/L is the wavenumber, L is the wavelength, and c is the complex phase
velocity.

The motion of the fluid on either side of the interface is governed by the continuity
equation and the Navier–Stokes equation with appropriate constants corresponding
to the physical properties of the two fluids. Taking advantage of the assumed axial
symmetry of the flow, we describe the perturbation flow in terms of the Stokes stream
function Ψj , where j = 1 or 2 for the inner or outer fluid respectively. The axial and
radial components of the velocity are given by

uxj = ε
1

σ

∂Ψj

∂σ
, uσj = −ε 1

σ

∂Ψj

∂x
. (2.2)

The azimuthal component of the vorticity is given by

ωϕj = −ε 1

σ
D2Ψj, (2.3)

where D2 is a second-order differential operator defined as

D2 =
∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
. (2.4)

Substituting these expressions into the azimuthal component of the vorticity transport
equation, and linearizing the resulting expression with respect to ε, we derive the
fourth-order partial differential equation

E2
jD

2Ψj = 0, (2.5)

where E2
j is another second-order differential operator defined as

E2
j = D2 − 1

νj

∂

∂t
(2.6)

and νj is the kinematic viscosity of the jth fluid.



216 C. Pozrikidis

We proceed by expressing the perturbation stream function in the usual normal-
mode form

Ψj = φj(σ) exp (ik(x− ct)). (2.7)

Substituting this expression into (2.5), we derive a fourth-order ordinary differential
equation for the functions φj . The general solution was given by Tomotika (1935) in
the form

φj(σ) = σ(A1,jI1(kσ) + B1,jK1(kσ) + A2,jI1(kjσ) + B2,jK1(kjσ)), (2.8)

where A1,j and B1,j are constant coefficients, I1, K1 are modified Bessel functions of
the first kind, and we have introduced the modified wavenumbers defined by

k2
j ≡ k2 − ick

νj
. (2.9)

The pressure may be expressed in the corresponding form

pj = εΠj(σ) exp (ik(x− ct)). (2.10)

Substituting equations (2.2), (2.7), (2,8), and (2.9) into the x-component of the Navier–
Stokes equation, and linearizing with respect to ε, we find

Πj(σ) = −ckρj(A1,jI0(kσ)− B1,jK0(kσ)). (2.11)

Next, we consider the implementation of the kinematic and dynamic boundary con-
ditions at the interface. Continuity of velocity requires φ1 = φ2 and dφ1/dσ = dφ2/dσ
at σ = f(x, t), where the function f(x, t), determining the location of the interface, was
introduced in equation (2.1). Applying domain perturbation linearization, we derive
the linearized conditions

φ1(a) = φ2(a),

(
dφ1

dσ

)
σ= a

=

(
dφ2

dσ

)
σ= a

. (2.12)

The evolution of the deforming interface must be consistent with the motion of the
fluid on either side of the interface. The requirement that fluid point particles lying
in the interface do not penetrate the bulk of the fluids imposes the condition

∂f

∂t
+ ux

∂f

∂x
− uσ = 0, (2.13)

where all functions are evaluated at the location of the unperturbed interface. Sub-
stituting equations (2.1), (2.2), and (2.7) into equation (2.13), applying once again the
method of domain perturbation, and discarding terms that do not depend linearly on
ε, we find the following expression for the complex amplitude of the perturbation:

a1 =
1

ac
φj(σ = a), (2.14)

where, in view of (2.12), we may set j = 1 or 2 on the right-hand side.
To satisfy the kinematic boundary conditions on the surface of the cylinders, we

require

ux,1 =

(
1

σ

∂Ψ1

∂σ

)
σ= ai

= 0, uσ,1 = −
(

1

σ

∂Ψ1

∂x

)
σ= ai

= 0 (2.15)

and

ux,2 =

(
1

σ

∂Ψ2

∂σ

)
σ= ae

= 0, uσ,2 = −
(

1

σ

∂Ψ2

∂x

)
σ= ae

= 0, (2.16)
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where ai, ae are the radii of the inner and outer cylinders, respectively, as shown in
figure 1.

The dynamic interfacial condition requires that the jump in the hydrodynamic
traction be balanced by the normal stress due to the surface tension γ, as well as by
the normal and tangential stress due to the elastic tensions, so that

∆f ≡ (σ(1) − σ(2)) · n = 2κmγn+ ∆fEls, (2.17)

where σ(1), σ(2) are the hydrodynamic stress tensors for the inner or outer fluid, n is
the unit vector normal to the interface pointing into the inner fluid labelled 1, and
κm is the mean curvature of the interface. A force balance over a small section of
the interface shows that the jump in the hydrodynamic traction due to the elastic
tensions is given by

∆fEls = (κlτll + κϕτϕϕ)n−
(
∂τll

∂l
+

1

σ

∂σ

∂l
(τll − τϕϕ)

)
t, (2.18)

where κl , κϕ are the principal curvatures of the interface in the azimuthal plane and
its conjugate plane, τll , τϕϕ are the principal elastic tensions referring to orthogonal
curvilinear axes corresponding to the tangential vector t and the azimuthal angle
ϕ, and l is the arclength measured in the direction of t (e.g. Pozrikidis 1992, pp.
152–153). Surface moment resultants are required to satisfy the torque balance in the
presence of transverse shearing tension, but these are assumed to be negligible due to
the small thickness of the membrane (e.g. Zarda et al. 1977; Evans & Yeung 1994).

All functions in equations (2.17) and (2.18) are evaluated at the position of the
unperturbed interface. Using equation (2.1) and standard expressions for the normal
vector and curvatures (e.g. Pozrikidis 1997), we derive the linearized forms

n = −eσ + εika1 exp (ik(x− ct))ex, (2.19)

where ex and eσ are the unit vectors in the axial and radial directions, and

κl = −εa1k
2 exp (ik(x− ct)), κϕ = −1

a
+ ε

a1

a2
exp (ik(x− ct)),

2κm = κl + κϕ = −1

a
+ ε

a1

a2
(1− k2a2) exp (ik(x− ct)).

 (2.20)

Next, we express the linearized principal elastic tensions in the normal-mode forms

τll = εγl exp (ik(x− ct)), τϕϕ = εγϕ exp (ik(x− ct)), (2.21)

where γl and γϕ are complex coefficients to be determined as part of the solution.
Substituting these forms along with expressions (2.19)–(2.21) into (2.18), the result
into (2.17), and linearizing both sides with respect to ε, we obtain the following two
scalar linearized boundary conditions for the tangential and normal components of
the traction:

µ1

(
∂ux,1

∂σ
+
∂uσ,1

∂x

)
− µ2

(
∂ux,2

∂σ
+
∂uσ,2

∂x

)
= εikγl exp (ik(x− ct)) (2.22)

and

−p1 + 2µ1

∂uσ,1

∂σ
+ p2 − 2µ2

∂uσ,2

∂σ
= ε

(
−γ0

a1

a2
(1− k2a2) + γϕ

1

a

)
exp (ik(x− ct)), (2.23)

where both sides are evaluated at the location of the unperturbed interface, at σ = a.



218 C. Pozrikidis

To this end, we require a constitutive equation relating the elastic tensions to the
interfacial deformation. For this purpose, we introduce the principal extension ratios

λl =
∂l

∂lU
, λϕ =

σ

σU
, (2.24)

where the subscript U signifies the unstressed state. Assuming that the membrane
behaves like a thin elastic sheet of an incompressible material that obeys the Mooney
constitutive law, we write

τll = 2
3
E(2λ̂l + λ̂ϕ), τϕϕ = 2

3
E(λ̂l + 2λ̂ϕ), (2.25a,b)

where E is the modulus of elasticity, λ̂l ≡ λl − 1, and λ̂ϕ ≡ λϕ − 1 (Green & Adkins
1960; Li et al. 1988; McDonald 1996). Introducing the normal-mode expansions

λl = 1 + εχl exp (ik(x− ct)), λϕ = 1 + εχϕ exp (ik(x− ct)) (2.26a,b)

and substituting them along with expressions (2.21) into equations (2.25), we find

γl = 2
3
E(2χl + χϕ), γϕ = 2

3
E(χl + 2χϕ). (2.27)

It remains to derive evolution equations for the principal extension ratios. An
evolution equation for λϕ arises simply by substituting (2.1) into (2.25b) and setting
σU equal to the unperturbed radius of the interface a to obtain

χϕ =
a1

a
. (2.28)

The evolution equation for χl derives from the equation of motion of a material
vector lying along the trace of the interface in an aximuthal plane,

1

χl

Dχl
Dt

= t · L · t (2.29)

where D/Dt is the material derivative, and L is the velocity gradient tensor (e.g.
Pozrikidis 1997, Chap. 1). Linearizing equation (2.29) we find

χl = − 1

ca

(
∂φj

∂σ

)
σ= a

, (2.30)

where j = 1 or 2.

We recall that the interface has been assumed to be unstressed when it has a
cylindrical shape, set the right-hand side of (2.25a) equal to the right-hand side
of (2.26a), and substitute equation (2.30) into the result. Integrating the emerging
expression with respect to x, we find that the axial displacement of a material
membrane point which at the unstressed state was located at x, is given by

δX = ε
i

kca

(
∂φj

∂σ

)
σ= a

exp (ik(x− ct)), (2.31)

where j = 1 or 2. The corresponding radial displacement, as given by equation (2.28),
is given by

δΣ = εa1 exp (ik(x− ct)). (2.32)
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Figure 2. Position of point particles along the membrane for a normal-mode perturbation leading
to exponential decay or growth, for positive and negative values of the displacement ratio δ. In the
unperturbed state, the particles are distributed evenly along the x-axis, as shown in the middle of
the illustration.

We anticipate now that, because of the absence of a mean flow, the phase velocity
c will be purely imaginary, and select the real parts of the preceding two equations
to obtain the normal mode parametrization

X = x+ εX1 sin (kx) exp (−ikct), Σ = a+ εΣ1 cos (kx) exp (−ikct), (2.33)

where we have defined

X1 ≡ 1

ikca

(
∂φj

∂σ

)
σ=a

, Σ1 ≡ a1. (2.34)

The ratio of the axial and radial amplitudes

δ ≡ X1

Σ1

= − 1

(−ikc)aa1

(
∂φj

∂σ

)
σ= a

(2.35)

determines the direction of displacement of the individual material points correspond-
ing to the normal modes. Figure 2 illustrates the perturbed position of point particles
which in the unstressed state are distributed evenly along the trace of the membrane,
as shown in the middle of the figure, for a positive and a negative value of δ.

Collecting the kinematic and dynamic boundary conditions expressed by equations
(2.14), (2.15), (2.16), (2.22), and (2.23), and using the derived expressions for the
velocity, pressure, curvatures, and elastic tensions, we formulate the following system
of eight homogeneous equations for the eight unknown coefficients Ai,j and Bi,j for
i, j = 1, 2:

Mw = 0, (2.36)
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where 0 is a null vector, w is a vector of unknown coefficients defined as

w = [A1,1, A2,1, B1,1, B2,1, A1,2, A2,2, B1,2, B2,2] (2.37)

and

M =



I1(ka) I1(k1a) K1(ka) K1(k1a)

kI0(ka) k1I0(k1a) −kK0(la) −k1K0(k1a)

I1(kai) I1(k1ai) K1(kai) K1(k1ai)

kI0(kai) k1I0(k1ai) −kK0(kai) −k1K0(k1ai)

0 0 0 0

0 0 0 0

F1 F2 F3 F4

G1 G2 G3 G4

−I1(ka) −I1(k2a) −K1(ka) −K1(k2a)

−kI0(ka) −k2I0(k2a) kK0(ka) k2K0(k2a)

0 0 0 0

0 0 0 0

I1(kae) I1(k2ae) K1(kae) K1(k2ae)

kI0(kae) k2I0(k2ae) −kK0(kae) −k2K0(k2ae)

F5 F6 F7 F8

G5 G6 G7 G8


. (2.38)

Lengthy expressions for the functions Fi and Gi are given in Appendix A.† Setting
the determinant of the matrix M equal to zero provides us with an algebraic, non-
polynomial equation for the complex phase velocity c. Unfortunately, the number of
solutions corresponding to distinct normal modes could not be assessed, except in the
limit of Stokes flow, as will be discussed in § 3.

When the inner cylinder is absent, we obtain an annular layer surrounding a liquid
thread. For small values of their arguments, the modified Bessel functions become
singular, and the general expressions for the stream function (2.7) and (2.8) obtain
singular terms. For the velocity to be regular at the x-axis, the constants B1,1 and
B2,1 must be set equal to zero, and this yields the following simplified expressions for
interior-fluid stream function:

Ψ1 = σ(A1,1I1(kσ) + A2,1I1(k1σ)) exp (ik(x− ct)). (2.39)

The linear system (2.36) undergoes analogous simplifications.
When the outer cylinder is absent, we obtain an annular layer coated on the exterior

surface of a cylindrical tube surrounded by an outer infinite fluid. For large values of
their arguments, the modified Bessel functions tend to become unbounded. To ensure
a regular behaviour, we set the coefficients A1,2 and A2,2 equal to zero, and obtain the
following simplified form for the exterior stream function:

Ψ2 = σ(B1,2K1(kσ) + B2,2K1(k2σ)) exp (ik(x− ct)). (2.40)

The linear system (2.36) undergoes analogous simplifications.

† Appendix A is available on request from the Journal of Fluid Mechanics Editorial Office or
the author.
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In the simplest configuration, both the internal and external cylinder are absent
yielding an infinite thread suspended in an infinite ambient fluid. The stream functions
for the internal and external flow are described, respectively, by equations (2.39) and
(2.40). The linear system (2.36) undergoes analogous simplifications.

3. Linear stability analysis for Stokes flow
When inertial forces are negligible within both fluids, the modified wavenumbers

kj reduce to the wavenumber k, and equation (2.8) no longer provides us with the
general solution. To study this limit, we expand the modified wavenumbers k1 and k2

in Taylor series about k with respect to the dimensionless phase velocities ĉj = ic/(kνj)
for j = 1, 2. Demanding that the resulting expression satisfies the equations of Stokes
flow to first order with respect to ĉj , we derive Tomotika’s (1936) expression

Ψj(σ) = σ
(
C1,jI1(kσ) + D1,jK1(kσ) + C2,j

1
2
σ(I0(kσ) + I2(kσ))

−D2,j
1
2
σ(K0(kσ) +K2(kσ))

)
exp (ik(x− ct)), (3.1)

where Cl,j and Dl,j are new coefficients. In this case, we obtain the linear system (2.36),
where the vector of unknowns is defined as

w = [C1,1, C2,1, D1,1, D2,1, C1,2, C2,2, D1,2, D2,2] (3.2)

and the coefficient matrix is given by

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1(ka) H1 K1(ka) H2 −I1(ka) H3 −K1(ka) H4

kI0(ka) L1 −kK0(ka) L2 −kI0(ka) L3 kK0(ka) L4

I1(kai) N1 K1(kai) N2 0 0 0 0

kI0(kai) N3 −kK0(kai) N4 0 0 0 0

0 0 0 0 I1(kae) Q1 K1(kae) Q2

0 0 0 0 kI0(kae) Q3 −kK0(kae) Q4

S1 S2 S3 S4 S5 S6 S7 S8

T1 T2 T3 T4 T5 T6 T7 T8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.3)

Expression for the entries Hi, Li, Ni, Qi, Si and Ti are given in Appendix B.† In
the case of an internally bounded annular layer, an externally annular bounded,
or an unbounded thread, the linear system (2.36) and the matrix (3.3) undergo
straightforward simplifications, as discussed in the preceding section.

Alternatively, we may solve the following set of equations in place of (2.5):

D2Ψ ∗j = 0, D2Ψj = Ψ ∗j (3.4)

and work with the general solution

Ψj(σ) = σ(E1,jI1(kσ) + F1,jK1(kσ) + E2,jσI0(kσ) + F2,jσK0(kσ)) exp (ik(x− ct)) (3.5)

derived by Goren (1962), where El,j and Fl,j are new coefficients. The properties of
the Bessel functions ensure that expression (3.1) reduces to (3.5) by an appropriate
grouping of the coefficients.

† Appendix B is available on request from the Journal of Fluid Mechanics Editorial Office or
the author.
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With the choice (3.5), we obtain the linear system (2.36), where the vector of
unknowns is defined as

w = [E1,1, E2,1, F1,1, F2,1, E1,2, E2,2, F1,2, F2,2] (3.6)

and the coefficient matrix is given by

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1(ka) aI0(ka) K1(ka) aK0(ka)

kI0(ka) L̂1 −kK0(ka) L̂2

I1(kai) aiI0(kai) K1(kai) aiK0(kai)

kI0(kai) N̂3 −kK0(kai) N̂4

0 0 0 0

0 0 0 0

S1 Ŝ2 S3 Ŝ4

T1 T̂2 T̂3 T̂4

−I1(ka) −aI0(ka) −K1(ka) −aK0(ka)

−kI0(ka) L̂3 kK0(ka) L̂4

0 0 0 0

0 0 0 0

I1(kae) aeI0(kae) K1(kae) aeK0(kae)

kI0(kae) Q̂3 −kK0(kae) Q̂4

S5 Ŝ6 S7 Ŝ8

T5 T̂6 T7 T̂8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.7)

Expressions for the entries L̂i, N̂i, Q̂i, Ŝi, T̂i are given in Appendix B. The second
and sixth columns of (3.7) arise, respectively, by dividing the first and fifth columns
of (3.3) by k, and adding the result to the second and sixth column, as shown in
Appendix B. The fourth and eighth columns of (3.7) arise, respectively, by dividing
the third and seventh columns of (3.3) by k, adding the result to the fourth and
eighth columns, and then switching the sign of the resulting expressions, as shown in
Appendix B.

Eliminating the denominators from all entries of matrix (3.3) or (3.7), by multi-
plying the corresponding rows by them, setting the determinant of the resulting
matrix equal to zero, and simplifying the resulting expressions, we obtain a secular
quadratic equation for the complex phase velocity c. This quadratic equation has two
conjugate imaginary solutions corresponding to two normal modes with vanishing
phase velocity. One of these modes is stable under any conditions, while the second
one may be unstable when the reduced wavenumber ka is sufficiently small and the
surface tension γ is sufficiently large compared to the modulus of elasticity E. In
the absence of elastic tensions, the coefficient of the quadratic term in the secular
equation vanishes, and we obtain a linear equation corresponding to a single normal
mode, in agreement with well-known results for constant surface tension.

The occurrence of two normal modes in the presence of elastic tensions could have
been predicted at the outset by the following arguments. An arbitrary axisymmetric
monochromatic perturbation displaces material particles along the trace of the mem-
brane in an azimuthal plane with waves of arbitrary amplitude and arbitrary phase
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shift. A normal-mode perturbation requires a specific ratio between the axial and
radial displacements, and a particular phase shift. Counting the number of unknowns
involved in the decomposition of an arbitrary wave into normal modes reveals that
only two such modes are necessary. In the absence of elastic tensions, the displacement
of the material particles is relevant only insofar as it determines the shape of the
perturbed interface, and one of the normal modes disappears, as will be described
later in this section. One might argue that similar arguments can be made for the more
general case of Navier–Stokes flow, but the generalization is not appropriate: only
in Stokes flow does specifying the interfacial geometry and distribution of boundary
velocity and interfacial traction uniquely determine the flow.

We proceed now to present and discuss stability graphs for several cases that
illustrate the effect of the ratio of the membrane tension to the modulus of elasticity
γ/E, viscosity ratio λ = µ2/µ1, and reduced cylinder radii ai/a and a/ae.

First, we consider a thread suspended in an infinte ambient fluid, in the absence of
an internal or external cylinder. In figure 3(a), we plot the dimensionless growth rate
σ̂I ≡ µkcIa/(γ + E) against the reduced wavenumber ka, for λ = 1, and γ/E = 0.001,
0.1, 0.5, 1, 2, 5, 10, 20; cI is the imaginary part of the complex phase velocity. The
dashed lines correspond to the conditionally unstable normal mode, and the solid lines
correspond to the stable normal mode. It is clear from these graphs that the elastic
tensions dampen the instability due to surface tension. Considering the conditionally
unstable normal mode, we note that as the ratio γ/E is reduced, the range of unstable
wavenumber ka shrinks from (0, 1) to (0, kastb), where kastb is a critical value. In the
limit as γ/E tends to zero, the threshold kastb tends to zero indicating that elastic
tensions, however large, are unable to stabilize disturbances with sufficiently small
wavenumbers. The growth rate of the unstable modes, however, is drastically reduced
in this limit, and for all practical purposes the instability may be regarded as being
suppressed below a certain threshold.

It is illuminating to consider in some detail the properties of the normal modes
for the thread discussed in the preceding paragraph. In figure 3(b), we plot the
ratio of the axial to radial displacement of material points along the interface, δ,
defined in equation (2.35), against the reduced wavenumber, on a linear-log scale. The
singularities in the dashed lines correspond to a change in the sign of δ from negative
values on the left, to positive values on the right. In all cases, as the wavenumber
tends to zero, the magnitude of δ tends to infinity, and this indicates that the radial
displacement of point particles along the membrane tends to become very small
compared to the axial displacement. That is, the normal modes correspond to in-
plane deformation of the membrane yielding compression waves. At the wavenumbers
where the dashed lines exhibit singularities, the converse is true: the axial displacement
of point particles vanishes, and the normal modes denote peristaltic waves. As γ/E
becomes smaller, the wavenumbers where sign inversion occurs are shifted to larger
values and eventually to infinity. As the ratio γ/E is raised, the displacement ratio δ
corresponding to the dashed lines for wavenumbers that are larger than the critical
one for sign inversion obtain increasingly larger values corresponding to small radial
displacements. A similar behaviour is exhibited by the solid lines for wavenumbers that
are smaller than the critical wavenumber. These asymptotic behaviours are responsible
for the disappearance of one of the normal modes in the limit of vanishing elastic
tensions.

To illustrate the effect of the viscosity ratio, in figure 4(a) we present results that are
analogous to those shown in figure 3(a), but for viscosity ratio λ = 0 corresponding to
a viscous thread suspended in an inviscid ambient fluid. The behaviour of the growth



224 C. Pozrikidis

0.04

0.02

0

–0.02

–0.04

–0.06

–0.08

–0.10
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.001

0.001

20

20

ka

rI
ˆ

(a)

4

2

0

–2

–4
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.001

20

20

ka

log |d |

(b)

(+)

(–)

0.001

Figure 3. (a) The dimensionless growth rate σ̂I ≡ µkcIa/(γ + E) vs. the reduced wavenumber ka,
for λ = 1, and γ/E = 0.001, 0.1, 0.5, 1, 2, 5, 10, 20; cI is the imaginary part of the complex phase
velocity. The dashed lines correspond to the conditionally unstable normal mode, and the solid lines
correspond to the stable normal mode. (b) Corresponding graphs of the ratio δ between the axial
to radial displacement of material points along the interface, defined in equation (2.35).

rate and displacement amplitude ratio is similar to that for λ = 1, with one important
exception: in the limit of vanishing wavenumbers, the growth rate does not vanish,
but tends to a non-zero value that depends on the ratio γ/E. This behaviour has been
noted and discussed previously for interfaces with constant or variable surface tension
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Figure 4. As figure 3 but for a viscous thread suspended in an inviscid medium, corresponding to
λ = 0.

(e.g. Pozrikidis 1999; Kwak & Pozrikidis 1999). The behaviour of the displacement
ratio is shown in figure 4(b).

Next, we discuss the influence of the internal and external cylinders on the growth
rates and on the properties of the normal modes. In figure 5(a, b), we present graphs
of the reduced growth rate and displacement ratio δ of the two normal modes, for
a core – annular arrangement – that is in the absence of the inner cylinder but in the
presence of an outer cylinder – for λ = 1, γ/E = 5, and for ae/a = 1.2, 1.5, 2, 3, 4, 5, 10,
∞. Figure 5(a) reveals a significant reduction in the growth rate of the conditionally
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Figure 5. Effect of an outer cylinder on the stability of a thread: (a) the dimensionless growth rate
and (b) displacement ratio, for λ = 1, γ/E = 5, and ae/a = 1.2, 1.5, 2, 3, 4, 5, 10, ∞.

unstable mode as the outer cylinder approaches the interface, accompanied by a
noticeable shifting of the wavenumber for maximum growth toward higher values.
The negative growth rate of the stable mode is less sensitive to the presence of the
outer cylinder. The corresponding behaviour of δ is illustrated in figure 5(b), showing
that the presence of the cylindrical boundary may cause an inversion in the sign
of δ.

In figure 6, we present analogous results for an annular film coated on the exterior



Instability of two annular layers bounded by a membrane 227

0.01

–0.01

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

ka

rI
ˆ

(a)

4

2

0

–2

–4
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

ka

log |d |

(b)

0

–0.02

0.8

0

0

0.02

0

0

0

0.8

0.8

0.8

Figure 6. Effect of an inner cylinder in the stability of an annular layer: (a) the dimensionless
growth rate and (b) displacement ratio, for λ = 1, γ/E = 5, and ai/a = 0, 0.01, 0.05, 0.1, 0.2, 0.3,
0.5, 0.8.

surface of a tube – that is in the presence of an inner cylinder but in the absence
of an outer cylinder – for λ = 1, γ/E = 5, and for ai/a = 0, 0.01, 0.05, 0.1, 0.2,
0.3, 0.5, 0.8. The behaviour of the growth rate and of the displacement amplitude
ratio are qualitatively similar to those described in the previous paragraph. It is
striking to note that the presence of an inner cylinder whose radius is only 1% of the
radius of the thread reduces by approximately 20% the growth rate of both normal
modes.
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4. Nonlinear instability of a thread in Stokes flow
In the second part of this paper, we study the nonlinear stages of the instability

of an infinite thread, in the absence of an internal or external cylinder, in the limit
of vanishing Reynolds number. These studies are based on numerical solutions of
the equations of Stokes flow using a boundary integral method. The main goal
is to examine whether and how the development of elastic tensions due to large
interfacial deformations restricts the growth of unstable waves and leads to stationary
axisymmetric waves similar to those observed in the experiments discussed in the
introduction. In § 4.1 we present the numerical method, and in § 4.2 we discuss the
results of the simulations.

4.1. Numerical method

Consider an infinite, periodic, axisymmetric thread of a fluid of equivalent radius a
and viscosity µ, suspended in an ambient fluid with viscosity λµ, with the interface
exhibiting evolving axisymmetric undulations of wavelength L. Following a well-
established formalism (e.g. Pozrikidis 1992), we derive the following Fredholm integral
equation of the second kind for the interfacial velocity:

uα(x0) = − 1

4πµ(1 + λ)

∫
C

Gαβ(x0, x)∆fβ(x) dl(x)

+
1− λ
1 + λ

1

4π

∫ PV

C

Qαβγ(x0, x)uβ(x)nγ(x) dl(x), (4.1)

where the point x0 lies at the interface, and the rest of the symbols are defined as
follows: Greek subscripts stand for the axial and radial polar cylindrical coordinates
x or σ, C is one period of the contour of the interface in an azimuthal plane; l
is the arclength along C; n is the unit vector normal to the interface pointing into
the thread; PV denotes the principal value of the double-layer potential expressed
by the second integral on the right-hand side of (4.1). The kernels G and Q are the
periodic Green’s functions of axisymmetric Stokes flow for the velocity and stress,
where the wavelength of the flow associated with the Green’s function matches that
of the flow under consideration. The computation of G and Q in terms of expedited
sums, the properties of the integral equation (4.1), and numerical method for solving
the integral equation are discussed by Pozrikidis (1999).

The jump in the traction across the interface ∆f involved in the single-layer
potential expressed by the first integral on the right-hand side of (4.1), is given in
equations (2.17) and (2.18). We consider neo-Hookean membranes consisting of a thin
layer of an incompressible elastic material that obeys the linear version of Mooney
constitutive law, and write

τll =
E

3

1

λlλϕ

(
λ2
l − 1

λ2
l λ

2
ϕ

)
(4.2)

and

τϕϕ =
E

3

1

λlλϕ

(
λ2
ϕ − 1

λ2
l λ

2
ϕ

)
, (4.3)

where E is Young’s modulus of elasticity (Li et al. 1988; McDonald 1996). In the
limit of small deformations, equations (4.2) and (4.3) yield the linearized forms (2.25).

To describe the motion of the interface, we trace one period of it in an azimuthal
plane with a set of point particles, approximate the contour of the interface by a
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Figure 7. Stages in the instability of a thread for λ = 1, in the absence of interfacial elasticity, E = 0,
subject to a sinusoidal perturbation with reduced wavenumber ka = 2

3
and amplitude a1/a = 0.20.

(a) Results obtained without smoothing, and (b) results obtained with smoothing the position of
the marker points. The profiles shown correspond to time intervals of 2.5 µa/γ.
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collection of blended circular arcs, solve the integral equation (4.1) for the velocity
using a boundary-element method, and advance the position of the point particles
using the first- or second-order Runge–Kutta method. In the numerical implementa-
tion, the jump in traction and interfacial velocity are assumed to vary linearly over
the boundary elements with respect to arclength. Implementing this approximation
yields a system of linear equations for the velocity at the nodes that is solved by
the method of Gauss elimination. When λ = 1, the coefficient of the second integral
on the right-hand side of (4.1), termed the Stokes double-layer potential vanishes,
leaving an integral representation in terms of the first integral alone, termed the
Stokes single-layer potential. All derivatives required for the computation of ∆f are
evaluated using second-order centred differences.

In the course of a simulation, marker points are added at regions of large curvature,
or when two adjacent marker points have been separated by a large distance due
to stretching. The position of the new points at the unstressed state, necessary for
the computation of the elastic tensions, is evaluated by quadratic interpolation with
respect to arclength. Points are removed when clustering occurs at regions of low
curvature, but only when the resulting distribution does not violate the aforementioned
two constraints. A typical simulation begins with 64 marker points and ends with
120 marker points. Numerical error causes the volume of the thread over a period to
decrease slightly during the simulations. The change is less than 0.5% in all cases, and
less that 0.1% in most cases. A typical simulation with λ = 1 requires approximately
30 hours of cpu time, and a simulation with λ 6= 1 requires approximately 60 hours
of cpu time on a sun sparcstation 20.

Interfacial elasticity causes numerical instabilities similar to, but more severe than,
those reported by Li et al. (1988) for axisymmetric capsules deforming under the
action of a uniaxial extensional flow. In the case of a thread, portions of the interface
undergo compression that causes wrinkling in the absence of bending moments.
The instabilities may be suppressed by raising the number of marker points while
decreasing the size of the time step, but exorbitant demands on computational time
place a pragmatic restriction on the method. As an alternative, we follow Li et al.
(1988) and smooth the Cartesian coordinates of the marker points using the five-
point formula of Longuet-Higgins & Cokelet (1976) which amounts to allowing the
coordinates of the marker points to undergo numerical diffusion. In certain cases, we
also smooth the distribution of the elastic tensions and components of the traction
discontinuity ∆f just before the evaluation of the single-layer potential, but this
smoothing is not critical for the viability of the simulations; performing the single-
layer integral smooths out irregularities in the distribution of elastic tensions and of
∆f and yields a less irregular velocity.

To investigate the effect of smoothing on the physical relevance of the results, we
performed a number of exploratory studies. Figure 7 shows stages in the instability
of a thread with λ = 1, in the absence of interfacial elasticity, E = 0, subject to a
sinusoidal perturbation with wavenumber ka = 2

3
and amplitude 0.20a. Figure 7(a)

shows results obtained without smoothing, and figure 7(b) shows corresponding results

Figure 8. Successive stages in the evolution of a thread with λ = 1 and γ/E = 5, subject to a
normal-mode perturbation with reduced wavenumber ka = 2

3
and amplitude η/a = 0.05; (a) stable

normal-mode perturbation, and (b) unstable perturbation. The profiles shown correspond to time
intervals of 2.5 µa/γ. (c) Evolution of the reduced amplitude of the interfacial wave for the stable
mode (dashed line), and for the unstable mode (solid line), showing excellent agreement with the
predictions of linear stability theory.
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obtained with smoothing the position of the marker points at every time step. In both
cases, the sinusoidal waves amplify at a rate that is in excellent agreement with the
predictions of linear theory, and the thread pinches off at a finite time near the base of
the developing drops. Observable differences arise only at the late stages of breakup;
smoothing, however, does not prevent pinching at the apex of the developing double
cone. These and other exploratory simulations suggest that smoothing does not affect
drastically the main features of the interfacial motion.

4.2. Numerical simulations

At the initial instant, point particles along the trace of the membrane in an azimuthal
plane are displaced so that their coordinates are given by

X = xU + η sin (kxU), Σ = a+ ξ cos (kxU), (4.4)

where xU is the axial position in the unstressed state corresponding to the cylindrical
interface. A normal-mode perturbation requires that the displacement amplitudes η
and ξ be small compared to the thread radius a, and the ratio η/ξ take the specific
value δ defined in equation (2.15).

First, we confirm that the results of the simulations are consistent with the pre-
dictions of linear stability theory in the limit of small deformations. Figure 8(a, b)
displays successive stages in the evolution of a thread with λ = 1, γ/E = 5, subject
to a perturbation with wavenumber ka = 2

3
and amplitude η/a = 0.05. The depicted

profiles correspond to evenly spaced time intervals from the initial instant up to time
50 µa/γ. Figure 8(a) corresponds to a stable normal mode with ξ/a = −0.293, and
figure 8(b) corresponds to an unstable normal mode with ξ/a = −0.0668. Figure 8(c)
displays the evolution of the reduced amplitude of the interfacial wave for the stable
and unstable mode, drawn with the dashed and solid line, respectively, on a linear-
logarithmic scale; A is half the difference between the maximum and minimum radial
position of the interface, and A0 is the amplitude at the initial instant. In both cases,
we obtain straight lines whose slopes are virtually identical to those predicted by
linear stability theory, respectively, equal to −0.0280 and 0.0157.

We proceed next to examine the effect of the interfacial elasticity, considering first
fluids with equal viscosity, λ = 1, and a perturbation with wavenumber ka = 0.5.
In the absence of surface elasticity, the evolution of the thread is similar to that
depicted in figure 7, leading to the development of a double cone that pinches off
at a finite time to yield a series of disconnected drops (Pozrikidis 1999). Figure 9(a)
displays stages in the evolution of the thread for an interface with a small modulus
of elasticity, E/γ = 0.05, and for a perturbation with axial and radial displacement
amplitudes η/a = 0.10, and ξ/a = −0.0068; these conditions do not correspond to a
normal mode. Small-scale instabilities due to inadequate spatial resolution prevented
the continuation of the simulation beyond the last profile shown. Figure 9(b) displays
stages in the evolution of a thread with a larger modulus of elasticity, E/γ = 0.20, for
a perturbation with displacement amplitudes η/a = 0.05, and ξ/a = −0.10935; these
conditions do correspond to a normal mode. In both cases, the interfacial waves grow
in agreement with the predictions of linear theory. As, however, the minimum thread

Figure 9. Successive stages in the instability of a thread for λ = 1 subject to a perturbation with
reduced wavenumber ka = 0.5, for (a) E/γ = 0.05, η/a = 0.10, and ξ/a = −0.0068; the profiles
shown correspond to time intervals of 4 µa/γ, (b) E/γ = 0.20, η/a = 0.05, and ξ/a = −0.10935; the
profiles shown correspond to time intervals of 10 µa/γ. (c) The evolution of the reduced amplitude
of the perturbation; the straight lines represent the prediction of the linear stability theory.
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radius reaches a certain value, the growth is arrested yielding slowly evolving shapes
consisting of alternating sequences of primary drops and secondary drops connected
by elongated ligaments.

Figure 9(c) displays the evolution of the reduced amplitude of the interfacial wave.
The straight lines represent the predictions of the linear theory for the unstable
normal mode shown in figure 3(a). The dashed lines corresponds to figure 9(a),
and the dimensionless time is defined as t̂ = tγ/aµ; the solid lines corresponds to
figure 9(b), and the dimensionless time is defined as t̂ = tE/aµ. At small times, the
numerical results are in good or excellent agreement with the predictions of the linear
theory, even though the amplitude of the perturbation is not small or the initial
condition may not correspond to a normal mode. The saturation of the instability is
evidenced by the levelling of the growth curves at long times.

Figure 10(a, b) shows the distribution of the elastic tensions over half a period
of the final profile shown in figure 9(a, b); the solid lines correspond to τll , and the
dashed lines correspond to τϕϕ. Both tensions take small or moderate values over the
primary and secondary bulges, and pronounced values over the connecting links. For
both cases illustrated in figure 10, the minimum value of is τϕϕ is on the order of −γ,
and this suggests that the instability reaches equilibrium when the sum of the elastic
tension in the azimuthal direction and the surface tension has become sufficiently
small. This observation provides us with criterion for estimating the minimum thread
radius at equilibrium on the basis of the constitutive equations (4.4). Near the regions
of minimum thread radius of a substantially deformed interface, the radial stretch
ratio λϕ is smaller than the azimuthal stretch ratio λl . To leading order, equation (4.3)
produces the negative elastic tension

τϕϕ ≈ −E
3

1

λ3
l λ

3
ϕ

. (4.5)

Equating the magnitude of this tension to the surface tension γ produces the following
estimate for the minimum thread radius at equilibrium:

σMin ≈ a 1

λl

(
1

3

E

γ

)1/3

. (4.6)

The numerical results show that, for the evolution shown in figure 9(b), the maximum
value of λl over the narrow bridge is on order 3, yielding the estimate σMin/L ≈ 0.022
which is in good agreement with the results of the simulation. For the evolution
shown in figure 9(a), the corresponding estimate is σMin/L ≈ 0.01.

The results presented in figure 9 suggest that the thread evolves toward an equi-
librium configuration with a deformed interfacial shape. If perfect equilibrium were
established, the fluids on either side of the interface would be stationary, and the
pressure inside the thread would be uniform. In figure 11(a, b), we plot the distribution
of the tangential and normal components of the jump in traction across the interface
corresponding to the final profile shown in figure 9(a, b); the tangential component
is drawn with a solid line, and the normal component is drawn with a dashed line.
In the absence of fluid motion, the tangential component must vanish and the nor-
mal component must be equal to the uniform pressure jump across the interface.
Figure 11 shows that the tangential component fluctuates around zero mainly due to
numerical error, whereas the normal component undergoes a substantial oscillation
as it stretches between two uniform values prevailing at the beginning and near the
mid-point of each period. This variation indicates that equilibrium has not been yet
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Figure 10. Distribution of the elastic tensions along the interface corresponding to the final profile
shown in figure 9(a, b).

established, but the intensity of the flow driven by the pressure gradient is small due
to the small radius of the ligaments connecting the bulges.

Next, we consider the evolution of a thread suspended in an inviscid ambient fluid
corresponding to the viscosity ratio λ = 0. Figure 12(a) displays stages in the evolution
of the thread for a perturbation with wavenumber ka = 0.5 and vanishing surface
elasticity, showing continuous thinning at the trough of the perturbation followed by
breakup at a finite time. In an earlier study (Pozrikidis 1999), it was shown that the
process of thinning is captured by a similarity solution discovered by Papageorgiou
(1995). It is important to note that the thread breaks up at the troughs only in the two
limiting cases λ = 0 or ∞; at intermediate values, breakup occurs asymmetrically, as
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Figure 11. Distribution of the tangential and normal components of the jump in traction across
the interface corresponding to the final profile shown in figure 9(a, b).

depicted in figure 7 for λ = 1. Figure 12(b, c) displays typical stages in the evolution
of a thread with E/γ = 0.05, 0.20, subject to a perturbation with ka = 0.5, and
with initial conditions corresponding to the unstable normal mode. In both cases, the
initial growth rate of the perturbation is in excellent agreement with the predictions
of the linear stability theory presented in figure 4(b). It is striking to observe that even
a small amount of elasticity is able to shift the point of minimum thread radius from
the mid-point of a wavelength to an off-centred position yielding bulged shapes.

The numerical results indicate that, in the presence of surface elasticity, a thread
with λ = 0 tends to an equilibrium shape with a quiescent internal fluid. In figure 13(a),
we plot the distributions of the elastic tensions corresponding to the final profile shown
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profiles shown correspond to time intervals of 0.5µa/γ), (b) E/γ = 0.05 (corresponding to time
intervals of 5 µa/γ), and (c) E/γ = 0.20 (Corresponding to time intervals of 7.5µa/γ). The initial
condition corresponds to the unstable normal mode.

in figure 12(c), and compare them to those shown in figure 10(b) to find reasonable
agreement. In figure 13(b), we plot the profile of the interface at the end of the
simulation with λ = 1 (solid line) or 0 (dashed line). Considering that the flow is still
evolving, albeit at a slow rate, we find reasonable agreement. Similar results were
obtained for E/γ = 0.05, although the agreement was less satisfactory due to the
limited duration of the simulation. The need to use a moderate number of marker
points in order to suppress numerical instabilities undermines the effectiveness of the
numerical method for thin cross-sections.

5. Concluding remarks
We have studied the linear stability of a cylindrical interface that exhibits con-

stant surface tension and develops elastic tensions due to the deformation, subject
to axisymmetric perturbations. The results confirmed that elastic tensions stabi-
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figure 12(c). (b) Comparison of the interface profile at the end of the simulation with λ = 1 (solid
line) or 0 (dashed line).

lize perturbations of sufficiently small wavelength that would have been unstable
if elastic tensions did not develop. Perturbations of sufficiently large wavelength,
however, remain unstable, and the thread is overall conditionally stable. In prac-
tice, the largest wavelength allowed is determined by the size of the physical system
that supports the thread at its ends, and the stability cut-off is determined by
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the length of the thread as well as by the conditions prevailing at the support
points.

Kwak & Pozrikidis (1999) studied the effect of an immiscible surfactant on the
instability of an annular layer or an infinite thread, and confirmed that the presence
of the surfactant reduces the growth of the perturbations but does not affect the range
of unstable reduced wavenumbers ka; a is the thread radius. The unstable range is
confined between zero and unity irrespective of the presence of the inner or outer
cylinder. In contrast, elastic tensions not only reduce the magnitude of the growth
rate, but also diminish the range of unstable wavenumbers.

There are certain similarities between the instability of the infinite thread consid-
ered here, and the instability of partially or totally liquid-filled elastic tube containing
a stationary or moving fluid, as discussed in the introduction (e.g. Pedley & Luo
1998; Heil 1997, 1998). When the magnitude of a negative transmural pressure is suf-
ficiently large, the tube has been observed to buckle into a non-axisymmetric shape,
which indicates that the system becomes unstable to non-axisymmetric perturbations.
In contrast, the Rayleigh instability of a cylindrical interface with constant surface
tension, corresponding to a positive transmural pressure, favours axisymmetric per-
turbations. This comparison supports the conjecture that the sign of the transmural
pressure determines the geometrical nature of the most dangerous mode.

The numerical results discussed in § 4 suggest the existence of a two-parameter
family of stable equilibrium shapes determined by the reduced elasticity E/γ and
the reduced wavenumber ka, in the range of wavenumbers where the thread is
linearly unstable, independent of the viscosity ratio. These equilibrium shapes may
be computed directly based on the membrane equilibrium equations with an a priori
unknown constant pressure drop across the interface. For a specified non-zero value
of the ratio E/γ, a family of stationary and stable shapes is expected to emanate
from the critical wavenumber ka for neutral stability; another obvious family of
unstable stationary shapes corresponds to the unperturbed cylindrical thread with an
associated pressure jump across the interface equal to γ/a. In the absence of bending
moments, the distribution of elastic stresses along the deformed shapes will be non-
singular provided that the membrane does not become perpendicular to the axis at
any point. Zarda et al. (1977) computed an analogous family of closed axisymmetric
shapes parametrized by the enclosed volume, subject to a specified surface area. The
direct computation of periodic stationary shapes arising from the instability of the
infinite thread is the subject of ongoing research.
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